🖍️
Developer Note
  • Welcome
  • Git
    • Eslint & Prettier & Stylelint & Husky
  • Programming Language
    • JavaScript
      • Script Async vs Defer
      • Module
      • Const VS Let VS Var
      • Promise
      • Event Loop
      • Execution Context
      • Hoisting
      • Closure
      • Event Buddling and Capturing
      • Garbage Collection
      • This
      • Routing
      • Debounce and Throttle
      • Web Component
      • Iterator
      • Syntax
      • String
      • Array
      • Object
      • Proxy & Reflect
      • ProtoType
      • Class
      • Immutability
      • Typeof & Instanceof
      • Npm (Node package manager)
    • TypeScript
      • Utility Type
      • Type vs Interface
      • Any vs Unknown vs Never
      • Void and undefined
      • Strict Mode
      • Namespace
      • Enum
      • Module
      • Generic
    • Python
      • Local Development
      • Uv
      • Asyncio & Event loop
      • Context Manager
      • Iterator & Generator
      • Fast API
      • Pydantic & Data Class
    • Java
      • Compilation and Execution
      • Data Type
      • Enumeration
      • Data Structure
      • Try Catch
      • InputStream and OutputStream
      • Concurrent
      • Unicode Block
      • Build Tools
      • Servlet
      • Java 8
  • Coding Pattern
    • MVC vs MVVM
    • OOP vs Functional
    • Error Handling
    • MVC vs Flux
    • Imperative vs Declarative
    • Design Pattern
  • Web Communication
    • REST API
      • Web Hook
      • CORS issue
    • HTTPS
    • GraphQL
      • REST API vs GraphQL
      • Implementation (NodeJS + React)
    • Server-Sent Event
    • Web Socket
    • IP
    • Domain Name System (DNS)
  • Frontend
    • Progressive Web App (PWA)
    • Single Page & Multiple Page Application
    • Search Engine Optimiaztion (SEO)
    • Web bundling & Micro-frontend
      • Webpack
        • Using Webpack to build React Application
        • Using Webpack to build react library
      • Vite
      • Using rollup to build react library
      • Implementing micro frontend
    • Web Security
      • CSRF & Nonce
      • XSS
      • Click hijacking
    • Cypress
    • CSS
      • Core
        • Box Model
        • Inline vs Block
        • Flexbox & Grid
        • Pseudo Class
        • Position
      • Tailwind CSS
        • Shadcn
      • CSS In JS
        • Material UI
    • React
      • Core
        • Component Pattern
        • React Lazy & Suspense
        • React Portal
        • Error Boundary
        • Rendering Methods
        • Environment Variable
        • Conditional CSS
        • Memo
        • Forward Reference
        • High Order Component (HOC) & Custom Hook
        • TypeScript
      • State Management
        • Redux
        • Recoil
        • Zustand
      • Routing
        • React Router Dom
      • Data Fetching
        • Axios & Hook
        • React Query
        • Orval
      • Table
        • React Table
      • Form & Validation
        • React Hook Form
        • Zod
      • NextJS
        • Page Router
        • App Router
      • React Native
    • Angular
    • Svelte
      • Svelte Kit
  • Backend
    • Cache
      • Browser Cache
      • Web Browser Storage
      • Proxy
      • Redis
    • Rate limit
    • Monitoring
      • Logging
      • Distributed Tracing
    • Load Test
    • Encryption
    • Authentication
      • Password Protection
      • Cookie & Session
      • JSON Web Token
      • SSO
        • OAuth 2.0
        • OpenID Connect (OIDC)
        • SAML
    • Payment
      • Pre-built
      • Custom
    • File Handling
      • Upload & Download (Front-end)
      • Stream & Buffer
    • Microservice
      • API Gateway
      • Service Discovery
      • Load Balancer
      • Circuit Breaker
      • Message Broker
      • BulkHead & Zipkin
    • Elastic Search
    • Database
      • SQL
        • Group By vs Distinct
        • Index
        • N + 1 problem
        • Normalization
        • Foreign Key
        • Relationship
        • Union & Join
        • User Defined Type
      • NOSQL (MongoDB)
      • Transaction
      • Sharding
      • Lock (Concurrency Control)
    • NodeJS
      • NodeJS vs Java Spring
      • ExpressJS
      • NestJS
        • Swagger
        • Class Validator & Validation Pipe
        • Passport (Authentication)
      • Path Module
      • Database Connection
        • Integrating with MYSQL
        • Sequalize
        • Integrating with MongoDB
        • Prisma
        • MikroORM
        • Mongoose
      • Streaming
      • Worker Thread
      • Passport JS
      • JSON Web Token
      • Socket IO
      • Bull MQ
      • Pino (Logging)
      • Yeoman
    • Spring
      • Spring MVC
      • Spring REST
      • Spring Actuator
      • Aspect Oriented Programming (AOP)
      • Controller Advice
      • Filter
      • Interceptor
      • Concurrent
      • Spring Security
      • Spring Boot
      • Spring Cloud
        • Resilience 4j
      • Quartz vs Spring Batch
      • JPA and Hibernate
      • HATEOS
      • Swagger
      • Unit Test (Java Spring)
      • Unit Test (Spring boot)
  • DevOp
    • Docker
    • Kubernetes
      • Helm
    • Nginx
    • File System
    • Cloud
      • AWS
        • EC2 (Virtual Machine)
        • Network
        • IAM
          • Role-Service Binding
        • Database
        • Route 53
        • S3
        • Message Queue
        • Application Service
        • Serverless Framework
        • Data Analysis
        • Machine Learning
        • Monitoring
        • Security
      • Azure
        • Identity
        • Compute Resource
        • Networking
        • Storage
        • Monitoring
      • Google Cloud
        • IAM
          • Workload Identity Federation
        • Compute Engine
        • VPC Network
        • Storage
        • Kubernetes Engine
        • App Engine
        • Cloud function
        • Cloud Run
        • Infra as Code
        • Pub/Sub
    • Deployment Strategy
    • Jenkins
    • Examples
      • Deploy NextJS on GCP
      • Deploy Spring on Azure
      • Deploy React on Azure
  • Domain Knowledge
    • Web 3
      • Blockchain
      • Cryptocurrency
    • AI
      • Prompt
      • Chain & Agent
      • LangChain
      • Chunking
      • Search
      • Side Products
Powered by GitBook
On this page
  • Overview
  • Symmetric Encryption
  • Introduction
  • Cipher
  • Asymmetric Encryption
  • Introduction
  • Cipher
  • Comparison
  • HMAC
  • Introduction
  • Comparison with symmetric encryption

Was this helpful?

  1. Backend

Encryption

PreviousLoad TestNextAuthentication

Last updated 9 months ago

Was this helpful?

Overview

Symmetric Encryption

Introduction

Cipher

  • Algorithm of executing encryption and decryption based on key

  • Examples of symmetric ciphers are Advanced Encryption Standard (AES), Data Encryption Standard (DES), Blowfish, and International Data Encryption Algorithm (IDEA).

  • IV (initialization vector) can be used to add randomness and unpredictability to the encryption process, which makes it more difficult for an attacker to decrypt the data.

Asymmetric Encryption

Introduction

  • In an asymmetric key encryption scheme, anyone can encrypt messages using a public key, but only the holder of the paired private key can decrypt such a message. The security of the system depends on the secrecy of the private key, which must not become known to any other.

Cipher

  • Algorithm of executing encryption and decryption based on key

  • Examples of asymmetric ciphers are RSA

Comparison

  1. Speed: Symmetric encryption is generally faster than asymmetric encryption, as it requires less computational power, making it suitable for encrypting large amounts of data.

  2. Key distribution: In symmetric encryption, secure key distribution is crucial, as the same key is used for both encryption and decryption. Asymmetric encryption simplifies key distribution, as only the public key needs to be shared, while the private key remains confidential.

  3. Key usage: Symmetric encryption uses a single shared key for both encryption and decryption, while asymmetric encryption employs a pair of keys: a public key for encryption and a private key for decryption.

  4. Use cases: Symmetric encryption is ideal for bulk data encryption and secure communication within closed systems, whereas asymmetric encryption is often used for secure key exchanges, digital signatures, and authentication in open systems.

  5. Security: Asymmetric encryption is considered more secure due to the use of two separate keys, making it harder for attackers to compromise the system. However, symmetric encryption can still provide strong security when implemented correctly with strong key management practices.

HMAC

Introduction

  • It is a message authentication code that uses a cryptographic hash function and a secret key to verify the authenticity and integrity of a message.

  • It's assumed that the client and server have already agreed on a common hash function, for example SHA2

  • In this method, the sender uses a secret key to generate a MAC (Message Authentication Code) for the message, which is sent along with the message.

  • The receiver uses the same secret key and the same hash function to calculate the MAC for the received message and compares it with the MAC received from the sender.

  • If the MACs match, the receiver can be sure that the message has not been tampered with or altered in transit.

Comparison with symmetric encryption

Similarity

  • Both involve the shared key for validation

Difference

  • Symmetric encryption aims is to focus on encryption and decryption of the content or message

  • HMAC aims to focus on to verify the authenticity and integrity of a message to come up true or false

is a type of encryption where only one key (a secret key) is used to both encrypt and decrypt electronic data. The entities communicating via symmetric encryption must exchange the key so that it can be used in the decryption process.

Symmetric encryption